선후관계분석은 두 Part로 나뉘어 진행됩니다. 최초 분석은 KC(Item) 간의 관계 분석을 하는 것이고, 이를 기반으로 방향성을 분석합니다. 관계분석을 위해서는 두 KC(item)간의 관계를 조건부 확률 형식으로 풀어내는 Association Rule Mining과 여러 KC(item)과의 연관관계를 고려할 때 가장 영향력이 큰 Item(KC)를 골라내는 방법으로 Random Forest Analysis의 Permutation Importance를 계산하는 과정을 도입하였습니다.
00:05
Item(KC)간의 관계가 모두 설정되면 Item(KC)간의 방향성을 설정합니다. 학습에 있어서의 방향성을 결정하는 방법은 1. 쉬운것부터 배운다. 2. 해당 Item(KC)를 제대로 Master한 그룹과 그렇지 않은 그룹간에는 점수차이가 많이 나야 한다. 라는 가정을 고려하였습니다.